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The intermtion between convection in a horizontal fluid layer heated from below 
and an ambient vertical magnetic field is considered. The analysis is based on the 
Boussinesq equations for two-dimensional convection rolls and the assumption 
that the amplitude A of the convection and the Chandrasekhar number Q are 
small. It is found that the magnetic energy is amplified by a factor of order Ri, 
where R, is the magnetic Reynolds number. The ratio between the magnetic and 
kinetic energies can reach values much larger than unity. Although the magnetic 
field always inhibits convection, this influence decreases with increasing ampli- 
tude of convection. Thus finite amplitude onset of steady convection becomes 
possible a t  Rayleigh numbers considerably below the values predicted by linear 
theory. 

1. Introduction 
The long-standing interest in the interaction of convection and magnet,ic field 

is primarily motivated by astrophysical problems. Observations of the super- 
granulation pattern of the sun indicate the accumulation of magnetic flux in the 
boundary regions of the convection cells. The existence of sunspots, on the other 
hand, indicates the suppression of convection by sufficiently strong magnetic 
fields. Besides these obscrvable cases of interaction, the theoretical evidence that 
the solar magnetic field is generated by convection indicates a more intricate 
connexion between the two phenomena. Since the generation of magnetic flux is 
accomplished by a complex dynamo process, theoretical analyses usually resort 
to  a statistical description based on assumptions about the small-scale details of 
the process. Because of the partial expulsion of magnetic fields from turbulent 
eddies the nature of the interaction between velocity and magnetic fields is far 
from being well understood. The problem is not restricted to the solar dynamo. 
Since convection is a likely candidate for the origin of the magnetic fields of the 
earth and other planets, the problem of interaction of convective eddies with 
magnetic fields appears in this case in a form similar to  that in the solar case. 

Although the analysis presented in this paper was originally motivated by the 
problem of the generation of magnetic fields by convection, we shall restrict our 
attention to  the case of interaction of convection with a homogeneous magnetic 
field imposed from the outside. Traditionally this problem has been considered 
from two different points of view. On the one hand, a periodic field of motions 
similar to those in convection cells has been prescribed and the distortion of the 
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initially homogeneous magnetic field calculat,ed as a function of the magnetic 
Reynoldsnumber. The papers by Weiss (1966) and Clark (1966) treat this problem 
in considerable detail. On the other hand, the stabilizing influence of a vertical 
magnetic field on the onset of convection in a horizontal layer heated from below 
has been investigated for different physical conditions by linear analysis. An 
ext,ensive review of this work is given in Chandrasekhar’s (1961) monograph. 

The difficulties of the nonlinear problem which encompasses both points of 
view have prevented extensive st,udies of the general case. The work of Peckover 
(197 1) ancl Peckover & Weiss (1972) took into account the action of the Lorentz 
force in a numerical study of forced convection in the presence of a magnetic field. 
They restricted their attention, however, to the limit of vanishing Prandtl 
number. Van der Borght, Murphy & Spiegel(l972) have used a mean-field model 
to describe the influence of a vertical magnetic field on heat transport by con- 
vection. More recently Weiss has extended the computations by Peckover and 
himself to include cases of finite Prandtl number. Some of his as yet unpublished 
results are mentioned in his review articles (Weiss 1971, 1975). In  the present 
paper a combination of a perturbation method and numerical integration will be 
used to obtain an explicit dependence of the nonlinear solution on all relevant 
physical parameters. Although the method of analysis is not adequate to describe 
some features of the problem in the strongly nonlinear regime, the models appear 
to be representative for a wide range of parameters. 

The analysis starts in 0 2 with the formulation of the problem and the solution 
for the convection velocity field. The solution for the magnetic field is described 
in $ 3 .  The mathematical analysis of this section is based on a similar analysis 
carried out in an earlier paper (Busse 1973a, referred to as I). I n  the discussion, 
8 4, the physical implications of the numerical results are investigated. Some 
concluding remarks are made in 0 5 .  

2. Mathematical formulation 
We consider a horizontal layer of depth d of an electrically conducting fluid 

heated from below and permeated by a magnetic field. The equations of motion 
in the Boussinesq approximation, the heat equation and the equation for the 
magnetic field B are given by 

P 1 
e + v . V v  = -V--[1-y(T-T0)]@k+vV2v+-(Vx B ) x B ,  ( 2 . 1 ~ )  
at Po PPO 

v . v =  0,  ( 2 . l b )  

aTl8t + v . VT = KWT, 

aB/at + v . VB = 7V2B + B . VV, 

(2.1 c) 

(2 .14 

where v, K and 7 represent the viscous, thermal and magnetic diffusivity, 
respectively, and ,u is the magnetic permeability. @ is the accelera,tion due to 
gravity and k is a unit vector in the upward vertical direction. The temperature 
dependence of the density 
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has been taken into account only in the gravity term according to the Boussinesq 
approximation. I n  the static state the temperature T varies linearly between 
the temperatures To+ $AT and To- &AT prescribed a t  the lower and upper 
boundaries, respectively. 

We assume that the magnetic field is uniform in this case and parallel to k. 
We describe the state of convection as a deviation from the static state. Using d as 
the length scale we introduce non-dimensional Cartesian co-ordinates with the 
z co-ordinate in the direction of k and origin a t  the bottom of the layer. Restricting 
our attention to the case of two-dimensional steady convection we define non- 
dimensional variables $, 8 and g by writing 

(2.2u, b )  

T = To- AT(z - 4) + ATB. ( 2 . 2 c )  

Note that we have adopted the thermal time scale in the scaling of the velocity 
field. The non-dimensional equations for the steady problem are readily obtained 
from ( 2 . l u , c , d ) :  

where the following non-dimensional parameters have been introduced: 

( 2 . 3 ~ )  

( 2 . 3 b )  

( 2 . 3 ~ )  

(2.4) 

R, Q and P are the Rayleigh number, Chandrasekhar number and Prandtl 
number, respectively. There appears to be no generally accepted name for the 
parameter S. 

We shall consider the case of strcss-free boundaries, 

a2@/az2 = 4 = 0 at z = 0 , 1 ,  ( 2 . 5 ~ )  

and assume that the temperature perturbation 0 vanishes at the boundaries: 

B = O  at z = O , 1 .  ( 2 . 5 b )  

I n  order that  the magnetic stress vanishes a t  the boundaries 

aglaz = o at z = 0, i ( 2 . 5 c )  

must be assumed. Conditions (2.5) represent the simplest kind of boundary 
conditions for the problem. They are distinguished by the property that they 
correspond to a periodic continuation of the convection layer above and below. 
I n  the absence of a magnetic field these boundary conditions have long been 
favoured in the analysis of convection problems. Conditions (2.5) represent the 
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natural extension to  the magnetic case. They have beenused before by Peckover & 
Weiss (1972). 

We shall solve (2.3) by regarding Q as a perturbation parameter and expanding 
1c/ and R in powers of Q : 

1c/ = t+ko+Q$,+ ..., R = Ro+&R,+ ... . (2.6) 

Analogous expansions hold for 8 and g. At zeroth order we obtain the solution 
without magnetic field, which is well known from earlier work (Malkus & Veronis 
1958; Schluter, Lortz R: Busse 1965): 

( 2 . 7 ~ )  

(2.7b)  

We have not included terms of higher order in A since we shall use only the 
lowest-order representation for $o in the analysis of hhe magnetic equation. 
Comparison with numerical computations of $o (Fronim 1965) indicates that 
expressions (2.7) yield a fair approximation even if the second term on the right- 
hand side of (2.7b) becomes of the same order as the first. 

$o = A{sin ax sin nz + O(A2)} ,  

Ro = (n2 + c ~ ~ ) ~  a-2 + #A2(n2 + 0 1 ~ ) ~  + . . . . 

Accordingly, the equation for go is 

C2go-~*[ncosnxsinax(l  + ~ g , / ~ z ) - c ~ ~ ~ ~ i ~ x s i n n z ~ g , / ~ x ]  = 0, (2.8) 

where A* = AS. Apart from a factor n, A* represents the magnetic Reynolds 
number of the problem based on the maximum horizontal velocity. We shall 
postpone the solution of (2.8) to the following section and consider the equations 

v20,  - a+,laz = 0. (2.96) 

I n  keeping with the approximation discussed above, we have neglected the 
nonlinear advection terms in these equations. By multiplying ( 2 . 9 ~ )  by $o and 
(2.9b) by ROOo, d d i n g  the equations and averaging them over the fluid layer, 
we obtain the solvability condition 

since the left-hand side vanishes after partial integrations have been performed. 
The second term in this relation represents Ohmic dissipation, which is balanced 
by the work done by the buoyancy force. Relation (2.10) can be simplified after 
partial integration and use of (2.8): 

o = R, (+,aoo/aZ)- s-2(lv2g012). (2.1 1 a )  

Since go depends only on A* the evaluation of this equation yields an expression 
for R, of the form 

R, = p(A*) .  (2.11b) 

For the purposes of this paper we shall not be interested in the effects of higher 
order in Q .  Thus the amplitude of convection as a function of the Rayleigh 
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number and the strengt,h of the applied magnetic field is given within our 
approximetion by 

where R, = (n2 + a-2 represents the critical value of the Rayleigh number for 
the onset of convection rolls with wavenumber a in the absence of a magnetic 
field. The physical implications of (2.12) will be discussed in § 4 after the function 
p ( A  *) 1ia.s been determined in Q 3. 

R - R, = QA2(n2 + a')' + Qp(A*) ,  (2.12) 

3. The magnetic field 

satisfy the boundary condition ( 2 . 5 ~ )  : 
I n  order to solve (2.8) we expand go in terms of trigonometric functions which 

m 

go = g,, sin v u  cosp7rz. 
v = l ,  p - 0  

go is an antisymmetric function of x since the convective motion is symmetric 
with respect to x = 0 and the same symmetry must be assumed for the magnetic 
field. Multiplication of (2.8) by s i n n u c o s m m  (4 - 26,,) yields, after the average 
over the fluid layer has been taken, 

(3.2) An,nv/i Qv, + A *naln 81, = 0, 

where the summation convention is assumed and the definition 

Anntup = tnnA*{Sv,n-*6,,,-1(n-m) (1 + S , n l )  +J",?L--lJ/,.,+,(n+m) 

+ ~ " , v , + * ~ , l , n l - l ( - ~ - ~ ) ( ~  +S,,l) +Su,n+lS~,nt+l(-ninl))  
+ (n2a2 + m27f') Ju,s,l,n (3.3) 

has been used. Because of the symmetry of expression (3.3) the equations for the 
coefficients g,,,, with even and odd n + m separate. The latter system of equations 
must have a vanishing solution since an inhomogeneous term is lacking in this 
case and since generation of magnetic flux cannot take place. We shall solve the 
system of equations (3.2) numerically for the coefficients g,, with even n +m by 
assuming that all coefficients wit,h n + m > N are sufficiently small that they can 
be neglected. This assumption can be tested by replacing N with N + 2. When 
the resulting changes in the coefficients g,, are sufficiently small the value N of 
the truncation parameter is regarded as acceptable. I n  particular, we shall use 
the criterion that the energy of the magnetic field changes by less than 1 9/o if N 
is replaced with N + 2. 

For the actual calculations we assume a = T ,  in which case the problem becomes 
identical to the corresponding problem solved in I. However, in the present case 
the calculations have been extended to much larger values of A* in order to 
approach the asymptotic range of the solution. 

The solution g,(x, z )  is best displayed by plotting magnetic field lines 

g o + x  = constant. 

Figures 1 (a) and ( b )  show typical cases, while a plot for A* = 5 can be found in I. 
It is remarkable how little the solution changes as A* is increased from 20 to 
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FIGURE 1. Magnetic field lines z+g = &bn ( n  = 1, ..., 9). 
(a) A* = 20; ( b )  A* = 60. 

60 except in the boundary layer, where the field strength increases in proportion 
to  A**. This suggests the use of boundary-layer theory to  obtain an analytical 
description of the solution. No simple approach for the application of asymptotic 
methods has been found, however. The fact that the line g o + x  = is rather 
isolated indicates that the interior of each convection roll is nearly field free. The 
boundary-layer structure is well displayed when the vertical average of the 

magnetic field aN _ -  '2 = 1 + c gZn027Tn cos 2nnx 
B A n - 1  

is plotted. Figure 2 shows this function for A* = 60 and 100. It is interesting t'hat 
the average field actually reverses before vanishing in the interior. This property 
of the magnetic field is similar to that of the mean vertical temperature gradient 
in high Rayleigh number convection. 

The maximum field strength B,,, = B,[ 1 + M(A*)]  is obviously reached for 
x = 0, z = 1 or x = 1, z = 0. Hence we find 

m 

M(A*)  = nv( - l)yg,,/l. 
u = l ,  p = o  

(3.4) 

Figure 3 shows that the function &?(A*) approaches an A*: dependence for large 
values of A *. 

The average magnetic energy density EL,, exhibits a similar dependence. Using 
a non-dimensional formulation for EAa1 in terms of the Alfv6n velocity we write 

, .  
The function E(A*) is given by 

4 m  
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FIGURE 2. The ratio -B,/BA of the mean vertical field strength to the ambient field 
strength as a function of the distance from the convection-cell boundary. (a) A* = 60. 
( b )  A* = 100. The small wiggles in the latter case are expected to disappear in the limit 
N + co. 

1 10 100 

A* 

FIUURE 3. (a) &$A*p(A*), (b )  M(A*)  and ( c )  E ( A * ) -  1. 
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A* N 

100 22 
24 

150 22 
24 
26 

200 22 
24 
26 
28 

300 26 
28 

E@*)  
10.6878 
10.69 17 

13.0180 
13.0553 
13.0724 

14.8508 
14.9684 
15.0333 
15.0677 

18.0681 
18.2308 

TABLE 1 

P ( A * )  
3.45123 
3.45667 

2.75384 
2.78306 
2.79037 

2.28342 
2.34665 
2.38300 
2.40296 

1.821 10 
1.87727 

iM(A*) 

16.3493 
16.5234 

19.3626 
19.7942 
20.1058 

21.3785 
24.0809 
22.6228 
23.0359 

25.9170 
26.7293 

It represents the factor by which the magnetic energy is amplified by the action 
of convection. It is displayed in figure 3 for the case a = 7 ~ .  Using (2.8), E(A*) can 
also be derived in the form 

The t,hird function of interest is p ( A * ) ,  defined by expressions (2.11). Evaluation 
of these expressions yields 

E(A*)  = 1 -$7TA*gl1. 

Sincep(A*) decays like A*--$ for large values of A*, we have plotted .4*p(A*) in 
figure 3. 

I n  table 1 numerical values of the functions E(A*) ,  p ( A * )  and M ( A * )  are 
displayed for various degrees of approximat-ion. The convergence for tho two 
latter functions is not quite as good as that for E ( A * ) ;  however, with the excep- 
tion of the highest value of A*, it can be regarded as satisfactory. 

The dependence of E(A*) ,  p ( A * )  and M(A*)  for high values of A* suggest's an 
asymptotic power-law dependence of the form 

E(A*)  = eA*3, p(A*) = rA*-4, J l (A*)  = mA*':h. (3 .7a)  

The numerical calculation yields as approximate values for the coefficients 

e = 1.065, r = 34.5, m = 1.63. (3.7 b )  

As we have mentioned before, the numerical analysis of the present problem is 
identical in the case a = n with the corresponding part of the analysis presented 
in I. The same computational program was used except for some modifications 
which were necessary to permit efficient computation of large matrices with ranks 
up to 210. We wish to  use this opportunity to correct expression (5.7) for p ( A * )  
in I .  The correct expression should be identical to expression (3.6) of this paper 
except that a2 and n2 must be exchanged inside the brackets. Although none 
of the conclusions in I are affected by this error, the form of p ( A * )  as plotted in 
figure 3 of I is slightly changed. The correct dependence of p(A*) is shown in 
figure 4 of this paper together with the function E(A*)  for low values of A*. 
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FIGURE 4. (a) p ( A * )  and (b) 5E(A*) for low values of A*. 

4. Discussion 
The theoretical results derived in this paper are based on the assumptioil that 

A and Q are small. These limitations are less severe than one might expect for a 
number of reasons. For instance, in the limit of vanishing A relation (2.12) 
reproduces exactly the dependence of the critical Rayleigh number for con- 
vection in the presence of a vertical magnetic field which was first derived by 
Thompson (1951) and Chandrasekhar (1962, 1961). One of the major results of 
our theory is the fact that the magnetic field changes the amplitude of the 
velocity field, but not its form to first order, since the term of order Q in (2.12) 
competes with a t'crm of order A2 rather than A .  This property is borne out by the 
results of the numerical computations by Peckover & Weiss (1972), which show 
little change in the form of the velocity field despite large changes in its amplitude. 
Since, in addition, relation (2.12) provides a good approximation in the non- 
magnetic case, as we pointed out in 0 2, we expect that it will describe the inter- 
action of convection and magnetic field for a much larger range of the relevant 
parameters than might be anticipated on the basis of the perturbation approach. 

The most interesting results of the interaction are obtained when the parameter 
S becomes large. For values of S much less than unity the ambient homogeneous 
field is hardly modified by convection and the magnetic field mainly affects the 
critical Rayleigh number for the onset of convection, as described by the linear 
theory of Thompson and Chandrasekhar. For increasing values of S the rate 
E(A*)  a t  which the magnetic energy is amplified a t  a given supercritical value of 
the Rayleigh number increases rapidly. For the special value R = 2R, we have 
plotted the amplification rate in figure 5 as a function of Q .  Asymptotically E(A*) 
increases in proportion t,o AS'& for sufficiently low values of Q. 

The increase &!(A*) in the maximum field strength above the ambient value 
behaves similarly t o  the function E(A*) - 1. This is because the area in which 
most ofthe field is concentrated decreases in the same manner as iW(A*)-'. Hence 
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10 

0 100 

Q 
FIGURE 5. E(A*)  as a function of the Chandrasekhnr number Q in the special case 
R = 2 R ,  = 16n4. - - -, steady solution is tinstablo. (a) S = 30; ( b )  S = 10; (c) S = 1.  

there is little need to discuss the dependence of the maximum field strength 
separately. Of more interest is the dependence of the magnetic energy density 
E,, on Q, which is given according to (3 .5 )  by 

E-1, = +QE(A*)/SP.  (4.1) 

E*iI first increases linearly with the ambient energy density until i t  reaches a 
maximum value E,,,,, if X is sufficiently large. From its maximum value E,, 
decreases with increasing Q until i t  drops to the ambient value, when the con- 
vective motion stops. To calculate EAT max we use the asymptotic expressions 
(3 .7)  for E(A*)  andp(A*). We first determine the value A* a t  which &A*& reaches 
its maximum. From 

A*dQ+ &QdA* = 0 

and 

which follows from ( 2 . 1 2 )  with 01 = n, we find 

(n4A*fl-2 - &A*-gQ) dA* + p ( A * )  dQ = 0, 

The corresponding value of E,,(A*) is 
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It is of interest to compare this result with the average kinetic energy density E, 
of the convection, which for the amplitude (4.2) assumes the value 

EKm = (R - R,)/3+. (4.4) 
The ratio EA!max/EKm = (e/r)P-l[i(R-Rn)I' (4.5) 

between magnetic and kinetic energy obviously can attain large values even 
within the limitations of our theory. The limit of vanishing Prandtl number 
should be regarded with caution, however. The two-dimensional form of con- 
vection is not physically realizable in this limit because of the oscillatory in- 
stability (Busse 1972). The form of this instability indicates that it will not be 
stabilized by the presence of the magnetic field. 

So far we have emphasized the action of the convective motion on the magnetic 
field a t  a given value of the Rayleigh number. It is just as interesting to take the 
opposite point of view and consider the effect of a given imposed magnetic field 
on the state of convection. It is obvious from expression (2.12) that the magnetic 
field always exerts a stabilizing influence on convection in that it increases the 
Rayleigh number in comparison with the non-magnetic case. However, the 
stabilizing influence diminishes as the amplitude of convection increases, since 
p ( A * )  is a monotonically decreasing function of A*. This changes the nature of 
the dependence of A on the Rayleigh number; in place of the monotonic 
dependence in the non-magnetic case, a reversal of the dependence becomes 
possible. The Rayleigh number at finite amplitudes drops below the critical 
value determined by linear stability analysis and subcritical instability becomes 
possible. 

To calculate the lowest value R m i n  of the Rayleigh number a t  which convection 
can exist we again use the asymptotic expressions (3.7) for p(A*)  in relation 
(2.12). Setting a = 7r we find as a necessary condition for R m l n  

A"n4S-2 - 1rA*-%Q 2 = 0. 

R m i n  = R,+g(+rnQ/JS)%. 
This relation for A* yields 

This result gives a power law for the dependence of Q different from the linear 
result in the case A = 0, 

to which we referred above. Accordingly, steady convection can occur a t  
significantly lower Rayleigh numbers than those predicted by the linear theory. 
In  figure 6 we have plotted the value Rmin for the onset of subcritical finite 
amplitude convection for different values of S. This figure shows that the 
asymptotic form (4.7) is valid for most of the region of interest. The diminishing 
influence of the magnetic field at  finite amplitudes is caused by flux expulsion 
from the interior of the convection roll. This phenomenon is, in a sense, opposite 
to the alignment process suggested by Malkus (1959), in which the Lorentz force 
counteracts the stabilizing effect of the nonlinear momentum advection terms. 
The latter process is likely t o  be relevant when the convection layer rotates 
about a vertical axis. 

When the time dependence in the equations of convection is taken into account 
i t  becomes obvious that the steady solution described by expression (2.12) is 

R, = R, + 2n2Q, (4.8) 
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Q 
FIGURE 6. The lowest Rayleigh nunibcr Rmin at which steady convection is possible as a 
function of the Chandrasekhar number Q .  ---, result of the linear theory. (a) S = 1 ;  
( b )  S = 3;  ( c )  S = 10; ( d )  S = 30; ( e )  S = 100. 

unstable for values of A* less than that given by (4.6). This is to be expected, 
since the Rayleigh number decreases with increasing amplitude in this region. 
Because of this instability the dashcd portion of the dependence of E(A*)  shown 
in figure 4 cannot be realized physically. 

I n  the case S 2 1 oscillatory as well as steady convection can occur in the 
presence of a sufficiently strong magnetic field, as discussed by Chandrasekhar 
(1961).  Although the critical Rayleigh number for oscillatory convection is lower 
than that for steady convection, i t  also exhibits a linear dependence on Q in 
contrast to expression (4.7). Both oscillatory convection and finite amplitude 
subcritical steady convection require a finite value of Q .  I n  the latter case the 
threshold value Qt which must be exceeded in order that R reaches a minimum 
value a t  a finite value of A* is given by 

Qt = n4S-2min{A*/-p’(A*)) z 3-23n4SP, 

corresponding to A4: w 3.2. Since both Q and A require finite values for sub- 
critical steady convection for values of S of order unity, it cannot be established 
rigorously within the framework of the present theory that finite amplitude 
steady convection can occur a t  Rayleigh numbers below the value for oscillatory 
onset. It is well known from other convection problems, for instance, the problem 
of thermohaline convection (Veronis 1968), that  finite amplitude effects of 
oscillatory convection are rather small. Thus we expect that expression (4.7) 
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governs the onset of steady convection even in the case when oscillatory con- 
vection sets in a t  a lower Rayleigh number. At values Q of order lo4 and higher 
this conclusion may have to be modified since computations by Weiss (1975) 
indicate a persistence of the oscillatory mode a t  high convection amplitudes. 
Obviously, the parameter regime of these calculations lies beyond the validity of 
our approximation. 

I n  a discussion of the onset of convection the dependence of the Rayleigh 
number on the wavenumber should be taken into account. We have neglected 
this important point since computations with varying wavenumber become 
prohibitively expensive. We expect, however, that the value a = 7~ which we 
have chosen in the present work is representative in all qualitative aspects 
and that the results will change only quantitatively for other values of the 
wavenumber. 

5.  Concluding remarks 
It is a popular hypothesis to assume equipartition between magnetic and 

kinetic energy for processes in electrically conducting fluids. An assumption 
of this kind is justified in the case of Alfv6n waves and related magnetohydro- 
dynamic processes for which dissipation is of minor importance. I n  cases such 
as convection, which are dominated by dissipative effects, the equipartition 
hypothesis is not valid, as is demonstrated by the results of this paper and the 
earlier results of Peekover & Weiss (1972). Magnetic and kinetic energies play 
a secondary role in convection as compared with the rates of Ohmic, viscous and 
thermal dissipation. Accordingly the diffusivity ratios become the important 
parameters of the physical processes. I n  the particular case treated in this paper 
magnetic and viscous dissipation compete. Because of the magnetic-flux expul- 
sion process Ohmic dissipation leads to a more complicated relationship between 
amplitude and Rayleigh number than in the case of pure viscous and thermal 
dissipation. 

The fact that  magnetic energy is amplified by the convective motion must not 
be interpreted as a dynamo process. As is evident from figure 1 ,  magnetic flux 
is a conserved quantity in the problem considered in this paper. A dynamo process 
which generates magnetic flux requires dependence on the third spatial co- 
ordinate. In I it  is shown how an additional component of the velocity ficld in the 
third direction can lead to magnetic-field generation. 

The property that in the present case as well as in I the velocity field does not 
depend on the co-ordinate in the third direction has the advantage that the 
analysis remains unchanged in a system rotating about an axis in that direction. 
The Coriolis force, which represents a dominating influence in rapidly rotating 
systems such as the carth’s core, enforces nearly two-dimensional convection. 
Hence the problcni treated in this paper is likely to be relevant to the interaction 
of convection and the magnetic field in the earth’s core. 

The fact that the inhibition of finite amplitude convection by a magnetic field 
is much less than that predicted by linear theory may have some bearing on the 
physics of sunspots. Although the basic magnetostatic balance in sunspots is 
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independent of the field strength in simple models (Busse 19736), the fact that 
weak magnetic fields do not affect convection much for values of S as high as 
those in the solar photosphere appears to be responsible for the absence of sun- 
spots with a magnetic field strength below the order of lo3 gauss. 

I am grateful to Dr N. 0. Weiss for stimulating discussions on the subject of 
this paper and to Dr R. M. Clever for his assistance with the numerical computa- 
tions. The research has been supported by the U.S. National Science Foundation 
under Grant GA-41750. 
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